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Abstract
This paper presents a new theory for nonlinear direct amplitude versus angle
(AVA) inversion and data-driven depth imaging for a depth-variable acoustic
medium. The method which is derived by direct inversion of the forward model
of acoustic single scattering requires no information of the velocity and density
potentials (subsurface properties), except for the velocity and density of the
uppermost layer which is the reference medium where the source and receiver
are situated at a finite distance above the scattering medium. The vertically
varying velocity and density of the scattering medium are estimated in a data-
driven manner solely from the angle- and depth-dependent Born potential
profile. The inversion method is obtained in three main steps. In step one, the
Born potential profile is computed by constant-velocity imaging (migration)
of the single scattering data in the time intercept-slowness domain. Generally,
interfaces in the Born potential are severely mislocated in depth compared
to the true potential. In step two, ‘squeezed’ depth-dependent velocity and
density potentials are estimated by nonlinear direct AVA inversion of the Born
potential after residual-moveout correction. Step three estimates the actual
depth-dependent velocity and density potentials by stretching the squeezed
potentials so that their interfaces are moved towards the correct depth. In the
nomenclature of seismic processing, the three steps can be described by the
sequence constant-velocity (partial) migration–inversion–residual migration.
In contrast to conventional, velocity-dependent depth migration, which requires
an accurate estimate of the velocities of the actual medium to obtain the proper
image, the depth imaging in step three requires the squeezed actual velocity
potential with interfaces matching those of the zero-angle Born potential depth
profile. This is exactly the velocity potential that is found in step two.
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1. Introduction

A key and the most serious challenge in seismic imaging and inversion today is the inability to
find an adequate image beneath complex heterogeneous media. This is a universally recognized
issue in the geophysical exploration community. However, there are approaches and research
efforts underway today that implicitly or explicitly recognize that state of affairs and offer a
spectrum of different responses to that challenge. We would like to begin by providing a brief
perspective of those methods and responses and then we will place the contribution of this
paper within that overall context.

The response has been in two basic different approaches and categories: (i) to seek
to improve the satisfaction of conditions and prerequsites for current seismic imaging and
(ii) to provide fundamentally new seismic imaging concepts that totally avoid the limiting
assumptions behind current imaging techniques.

The methods in category (i) currently most often correspond to indirect inversion. Indirect
inversion methods seek to satisfy a property associated with a desired solution, and in that
way indirectly produce a solution. Often a search engine is involved seeking to minimize an
objective function, which can be a mismatch between synthetic or actual data, or a criteria for
searching offset trajectories, with different degrees of freedom, seeking, e.g., either an optimal
stack or a residual moveout for a horizontal common image gather. The key references are
Ursin (1982), Hubral (1999), Gelchinsky et al (1999), Landa et al (1999) and Berkhout and
Verschuur (2001). An advantage of these indirect methods is their ease of understanding of
searching around until something fits, bringing with it broader audience acceptance, but at the
cost perhaps of moving away from physics and towards belief in and attraction to optimization
search engines.

The methods in category (ii) frequently fall into the area of direct inversion, although
not exclusively. Direct methods provide algorithms that explicitly solve for and produce the
stated processing objective. In direct methods, there were really three historic approaches.
First, linear methods that assumed that an adequate velocity could be determined for imaging
and furthermore that the changes in earth material properties across an interface could be well
approximated by a linear form. Linear methods contain all current migration methods (e.g.,
finite difference, beam, FK, plane wave or Kirchhoff), and linear inverse methods, and inversion
methods based on e.g. Bortfeld, Aki and Richards, linear approximate relationships. Among
those who pioneered these methods are Claerbout (1971), Secrest (1975), Schneider (1978),
Stolt (1978), Gazdag (1978), French (1978), Cohen and Bleistein (1977), Berkhout (1982),
Clayton and Stolt (1981) and Stolt and Weglein (1985). A review of parameter inversion and
angle migration in anisotropic elastic media is given in Ursin (2004). Second, iterate linear
inverse, a nonlinear method where the solved for first linear estimated perturbation in medium
properties would be added to the original reference or background to update the background
towards the actual medium properties. Iterative linear inverse had a flurry of activity in the
1980s where the key references are Keys and Weglein (1983), Lailly (1984), Ikelle (1986),
Tarantola (1987), Cao (1989) and Beydoun and Mendes (1989). Third, the inverse scattering
series and isolated task-separated subseries. For an introduction to the inverse scattering
series in the seismic field, the reader is referred to the series of papers by Weglein et al
(2000, 2002, 2003), Innanen (2003), Innanen and Weglein (2003), Shaw et al (2004), Shaw
and Weglein (2004), Shaw (2005), Zhang and Weglein (2005), Liu et al (2005) and Ramirez
and Weglein (2005). The inverse scattering series was originally, and remains today, the only
comprehensive direct methodology that can accomplish all of the tasks associated with seismic
processing objectives directly in terms of reflection data, and a simple (e.g., homogeneous
water speed) reference propagation that is never updated or moved towards the actual. All
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inverse steps are essentially migration in water speed, yet its potential is to directly address
the most complex challenges. This potential has been realized for free surface and internal
multiple removal under difficult geologic conditions, and this promise is being pursued for
imaging and inverting primaries, with very promising multi-dimensional synthetic tests and
algorithm development.

Recently, Amundsen et al (2005a, 2005b) have published papers using 1D inverse
scattering formalism and seeking non-series approximate solutions to imaging objectives
associated with primaries. Recognizing that the integrals that appear in the closed-form
leading-order 1D imaging subseries derived by Shaw et al (2004) and Shaw (2005), and
discussed in Innanen (2003), exhibited an approximate eikonal form, it triggered that there
could be an analogous forward approximate scattering model based on the eikonal, or its
generalization, the WKBJ approximation. We refer to Morse and Feshbach (1953), Schiff
(1955 and later editions), Glauber (1959), Joachain (1975) and Bransden and Joachain (1989)
for a description of the physical basis and applications of the eikonal and WKBJ methods.
Based on the experience from the research reported on the closed-form leading-order 1D
imaging subseries, Amundsen and coworkers launched research into establishing a new
derivation of those imaging results by considering the inversion of the WKBJ scattered field
and were able to recast and reproduce those earlier available 1D results without resorting to a
series. In particular, they showed that for a piecewise-constant 1D velocity-varying medium,
the inverse WKBJ scattering solution could be formed by the three steps of constant-velocity
migration, inversion and residual migration. After constant-velocity migration, layer velocities
are erroneous and layer interfaces are wrongly positioned. The direct, non-iterative inversion
step gives an estimate of the true layer velocities, but does not adjust the depth of the layer
interfaces. From these velocity estimates, the residual migration moves the layer interfaces
to their approximately true depths. Observe that in contrast to conventional depth migration,
which requires the correct depth velocity model to obtain the correct depth image, the residual
migration requires correct layer velocities but interfaces at the wrong depths, that is, the depths
provided by the constant-velocity migration.

The current paper provides further insights into the amplitude versus angle (AVA)
application of the WKBJ forward model and relates these to earlier inverse series efforts
and the results of Zhang and Weglein (2005), again here without a series, and provides the
same conceptual benefit, new insight and guidance within its context, to the overall campaign
pursued by the inverse scattering series. Insights and different perspectives and derivations on
previous results are important factors contributing to further advances in the inverse scattering
imaging and inversion series. However, with further and more complete 3D imaging efforts,
we anticipate being able to capture imaging capability without a closed form, and therefore
without a single-step non-series approximate inverse.

More specifically, the main objective of the present paper is to extend the work in
Amundsen et al (2005b) from a 1D normal-incidence scattering model to a 3D scattering
model for a depth-variable velocity and density acoustic medium. The current paper, which
has a different starting point from the earlier imaging papers, is organized as follows. First, we
derive a simple physical model for single scattering of acoustic waves from a stratified medium.
The incident downgoing wave is described by the zero-order WKBJ approximation. The
scattered wave is described by the first-order WKBJ approximation which takes into account
the coupling of the incident wave with the scattered wave (Bremmer 1951; Ursin 1984, 1987).
Second, the forward model is used as the mathematical framework for relating the angle-
dependent Born potential to the single scattering response of a stratified acoustic medium.
Using the known constant velocity and density reference medium, the angle-dependent Born
potential is simply obtained by trace integration of the scattered data transformed to the
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time intercept-slowness domain, by which the primary reflection events are placed at depths
computed linearly only using the constant reference velocity and the traveltimes of primaries.
From the angle-dependent residual moveout-corrected Born potential, amplitude versus angle
inversion gives an estimate within the layer boundaries of the zero-angle Born potential depth
profile of what the depth-dependent velocity and density potentials would be. Since the layer
boundaries are severely mislocated in the zero-angle Born potential depth profile, the AVA
analysis produces estimates of the amplitude of the actual velocity and density potentials but
at wrong depths. We denote the mislocated velocity and density potentials by ‘squeezed’
potentials, as they appear like the actual velocity and density potentials when the depth axis
is squeezed. From the information in the squeezed velocity potential, we show in the WKBJ
approximation that the reflector positions in both the squeezed velocity and squeezed density
potentials can be moved with high precision towards their correct spatial location without
introducing any information about the subsurface. Finally, a simple example is constructed
to show how the procedures introduced in this paper can be applied to obtain the velocity
and density potentials and the corresponding velocities and densities for the stratified acoustic
medium.

Note that the inverse scattering problem to be analysed in the present paper is limited to
that of processing acoustic single scattering events, or equivalently, primaries. As any real
acoustic data from a layered medium will contain both primaries and multiples, real data
have to go through a preprocessing step to remove all types of multiples before applying the
proposed inversion/depth imaging steps to be presented. The preprocessing is in agreement
with the standard practice to seek to attenuate all multiples from acoustic (seismic) data
before using primaries for imaging changes in the medium’s properties (see, e.g., Weglein
et al (1997) and Ikelle and Amundsen (2005)). The historical evolution and development of
seismic processing and inversion explain the motivation for addressing the inverse acoustic
scattering problem as that of inverting primaries.

2. The forward scattering model

In this section, we present the forward model of acoustic single scattering. For a stratified
medium, it is a standard procedure to transform the physical field variables by applying a
Fourier transform with respect to time and horizontal spatial coordinates. This transforms the
acoustic equations into a system of first-order differential equations.

Let t denote time and (x, y, z) the Cartesian coordinates. The depth axis is positive
downwards. The acoustic medium, where the wave velocity and density are functions of
depth, c = c(z), ρ = ρ(z), respectively, is embedded in a homogeneous reference medium
with wave velocity c0 and density ρ0. The system of equations governing the wave motion
consists of the pressure–particle velocity relation (the time derivative of Hooke’s law) and the
equation of motion:

∇ · v(x, y, z, t) +
1

M(z)

∂p(x, y, z, t)

∂t
= ∂iv(x, y, z, t)

∂t
, (1)

∇p(x, y, z, t) + ρ(z)
∂v(x, y, z, t)

∂t
= 0, (2)

where p is the pressure, v is the particle velocity vector, M = ρc2 is the bulk modulus and iv
is a source distribution which represents a volume density of volume injection (for example,
an airgun source). A monopole point source at x = y = z = 0 is represented by

ρ
∂2iv(x, y, z, t)

∂t2
= δ(x)δ(y)δ(z)a(t),
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where a(t) is the source signature and δ(x)δ(y)δ(z) represents a 3D spatial Dirac delta
function. The boundary conditions state continuity of pressure and vertical component of
particle velocity at the interfaces. In addition, we impose the radiation conditions that the
only downgoing wave in the source layer is that radiated by the source and that there are no
upgoing waves in the lower halfspace.

We introduce the Fourier transform with respect to time and horizontal spatial coordinates

G(kx, ky, ω) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dx dy dt exp[−i(kxx + kyy − ωt)]g(x, y, t), (3)

with inverse

g(x, y, t) = 1

(2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dkx dky dω exp[i(kxx + kyy − ωt)]G(kx, ky, ω). (4)

Here, ω denotes circular frequency and (kx, ky) are horizontal wavenumbers conjugate to
(x, y). Furthermore, we introduce the radial wavenumber k2

r = k2
x + k2

y , the horizontal
slownesses px = kx/ω and py = ky/ω, the radial slowness (ray parameter) p2 = p2

x + p2
y and

the vertical wavenumber Kz(z) = √
ω2c−2(z) − k2

r . In the reference medium, the wavenumber

is denoted by k = ω/c0 and the vertical wavenumber is denoted by kz =
√

ω2c−2
0 − k2

r . We
also introduce the vertical slowness in the reference medium q = kz/ω. For notational
convenience, we define

κ = kk−1
z .

In the reference medium, a plane wave is described by its frequency ω and direction of travel

θ = arcsin(c0p). (5)

The angle θ is measured as the ray’s angle from the z-axis to the ray. Then, κ−1 = cos θ =√
1 − (c0p)2 = c0q.

The Fourier transform of equations (1) and (2) leads to the first-order wave equation for
pressure P and vertical component of particle velocity Vz (Ursin 1983, Claerbout 1985)

d

dz
B(z) = A(z)B(z) + Σ(z), (6)

with field vector

B(z) =
[
P(z)

Vz(z)

]
, (7)

system matrix

A(z) =
[

0 iωρ(z)

−[iωρ(z)]−1K2
z (z) 0

]
(8)

and source vector

Σ(z) =
[

0
−iωIv(z)

]
. (9)

To characterize the difference between the reference and actual media, we introduce the
velocity potential

αc(z) = 1 −
(

c0

c(z)

)2

(10)

and the density potential

αρ(z) = ln rρ(z), rρ(z) = ρ0

ρ(z)
. (11)
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The vertical wavenumber can now be expressed as

Kz(z) = kz	(z),

where

	(z) = Kz(z)

kz

= [1 − κ2αc(z)]
1
2 (12)

is a function of the velocity potential, but not frequency, and defines the ratio of the vertical
wavenumbers in the actual and reference media.

In the scattering formalism, the system matrix can then be written as

A(z) =
[

0 iωρ0r
−1
ρ (z)

−[iωρ0]−1rρ(z)k
2
z	

2(z) 0

]
. (13)

The field vector B can be decomposed into a wave vector W = (U,D)T containing
upgoing (U) and downgoing (D) pressure waves by an eigensystem analysis of the system
matrix A. By inserting the eigenvectors of A into the columns of the matrix L, the up/down
decomposition is achieved by the linear transformation

W = L−1B, (14)

where

L−1 = 1

2

[
1 −Z

1 Z

]
(15)

is the decomposition matrix, and

L =
[

1 1
−Z−1 Z−1

]
(16)

is the composition matrix, with

Z(z) = Z0[rρ(z)	(z)]−1,

where Z0 = ρ0ω/kz is the acoustic impedance.

2.1. Differential equation for W in an inhomogeneous medium

Disregarding the source term in equation (6), the differential equation for W in an
inhomogeneous medium follows from equation (6) as

dW (z)

dz
=

[
Λ(z) − L−1(z)

dL(z)

dz

]
W (z), (17)

where the eigenvalue decomposition of A gives the diagonal eigenvalue matrix

Λ = L−1AL. (18)

Equation (17) can then be written as

dW (z)

dz
=

[−ikz	(z) 0
0 ikz	(z)

]
W (z) + s(z)

[
1 −1
−1 1

]
W (z), (19)

where s is the scattering function:

s(z) = −1

2
Z(z)

(
dZ−1(z)

dz

)
= −1

2

d

dz
ln

[
rρ(z)	(z)

]
. (20)

The differential equations for U and D thus become

dU(z)

dz
= −ikz	(z)U(z) + s(z) [U(z) − D(z)] (21)
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and
dD(z)

dz
= ikz	(z)D(z) + s(z) [D(z) − U(z)] . (22)

Note that the upgoing and downgoing waves are coupled because of the vertical variations of
the medium parameters, which are expressed by the term dL/dz.

In the reference medium, αc = αρ = 0, and the exact solutions for the upgoing and
downgoing waves are

U(z) = exp(−ikzz)U(0), D(z) = exp(ikzz)D(0).

Neither of these two solutions admit scattering.
As is usual in the scattering theory, the potentials αc(z) and αρ(z) are assumed to vanish

asymptotically, i.e. αc(z), αρ(z) → 0 as z → ±∞, at which limit the wavefunction P is
merely a plane propagating wave described by exp(±ikzz).

2.2. WKBJ solutions for incident and scattered waves

Equations (21) and (22) are general differential equations for U and D, respectively, and
they describe all possible wave arrivals in the layered medium. In particular, they show
how the entire wave field is made up of all the internal reflections and refractions within the
medium. This wave field can be represented by an infinite series, known as the Bremmer
series (Bremmer 1951), each term of which represents a wave that is reflected a particular
number of times inside the medium.

In this paper, however, our interest is to describe single scattering. To this end, we must
describe the downward propagation of the incident field and its interaction with the upward
propagating single-scattered wave. Then, for the incident field we neglect the coupling of
U with D. (We do not include the generation of downgoing waves (multiples) caused by the
upgoing scattered field.) Disregarding this interaction, which is called the zero-order WKBJ
approximation, gives the one-way wave equation for the incident field

dD0(z)

dz
= [ikz	(z) + s(z)] D0(z), (23)

with solution

D0(z) = D0(0) exp

(∫ z

0
dz′ s(z′)

)
exp

(
ikz

∫ z

0
dz′ 	(z′)

)
. (24)

The boundary condition states that just below the source, the downgoing field is that radiated
by the source:

D0(0
+) = A(k) = −a(ω)

2ikz

, (25)

where a(ω) is the source strength. By evaluating the integral over s, we obtain the following
zero-order WKBJ solution for the downgoing field:

D0(z) = A(k)[rρ(z)	(z)]−
1
2 exp

(
ikz

∫ z

0
dz′ 	(z′)

)
. (26)

It is convenient to characterize the phase of the incident field in terms of the difference
between wave propagation in models without and with the influence of the velocity potential.
Equation (26) can then be written as

D0(z) = A(k)[rρ(z)	(z)]−
1
2 exp(ikz[z − ξ(z)]), (27)
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where the WKBJ shift function

ξ = ξW(z) =
∫ z

−∞
dz′[1 − 	(z′)] (28)

now picks up the additional phase caused by the velocity potential. The WKBJ shift function
obeys the differential equation

−2ξ ′
W + (ξ ′

W)2 + κ−2αc = 0, ξ
(n)
W = 0, n � 2, (29)

which is straightforwardly verified by direct substitution. The zero of the second- and higher-
order derivatives of the shift function implies that inside a layer it must vary slowly over a
wavelength.

The scattered field is solved in the first-order WKBJ approximation, where the zero-order
WKBJ approximation incident field (27) is substituted into the differential equation (21). The
scattered field then satisfies the linear first-order differential equation

dU1(z)

dz
+ [ikz	(z) − s(z)] U1(z) = −s(z)D0(z). (30)

Taking into account the radiation condition, U(∞) = 0 (no scattered (upgoing) waves at
infinity), the solution for the scattered field at the measurement level is

U1(z = 0) = A(k)

∫ ∞

0
dz s(z) exp(2ikz[z − ξ(z)]). (31)

Thus, the scattered field is an integral over all depths of the logarithmic derivative of an
angle-weighted acoustic impedance ratio, retarded by two-way traveltimes.

2.3. The single-scattering forward model

It is convenient to express the single-scattering data in terms of the dimensionless scattering
amplitude � = A−1U1. Our objective is to analyse the logarithmic changes of the acoustic
potentials and not their vertical derivatives as expressed by the scattering function s in
equation (20). A partial integration in equation (31) leads to the following result for the
dimensionless scattering amplitude:

�(k) = − ik

2κ

∫ ∞

0
dz α(z) exp(2ikz[z − ξ(z)]), (32)

where α(z) is an angle-dependent scattering potential:

α(z) = −2 ln[rρ(z)	(z)]	(z). (33)

Equation (32) is a nonlinear forward model for computing the dimensionless scattering
amplitude �(k) from the potential α. We make the following remarks. The single scattering
amplitude is found by performing an integral over depth over the product of an amplitude
function and a delay function. The amplitude function is the scattering potential. The delay
function consists of the product of two functions, where the first exp(2ikzz) accounts for the
two-way wave propagation of the unperturbed wave in the reference medium, whereas the
second exp[−2ikzξ(z)] corrects for the influence of the potential. Since the scattered wave
U1(z) travels through the same potential α(z) as the incident wave D0(z), the shift function ξ(z)

is the same for both cases. For a piecewise-constant layered medium, the delay function in the
WKBJ approximation predicts the exact traveltimes of the single scattering events. However,
performing the integral over depth, the predicted amplitudes of the single scattering events
will not be exact for the piecewise-constant layered medium unless the boundary conditions of
continuity of the pressure and the vertical component of the particle velocity at the interfaces
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are explicitly introduced. For the sake of forward modelling, the boundary conditions can
easily be accounted for. Interfaces or discontinuities in the potential are then treated by
correctly coupling the incident wave to the scattered waves. However, for the inverse problem,
where the location of interfaces is not known, it would be cumbersome to account for the
continuity conditions in an explicit manner. Therefore, we choose to neglect these conditions
at the expense of using a forward model that predicts slightly incorrect amplitudes of the single
scattering events.

When we later simulate data to test the inverse scattering algorithm to be described in
the following section, we do not base the simulation on the single scattering forward model
(32), but on the exact forward model for primary reflections in a piecewise-constant layered
medium. This model is described in appendix A.

2.3.1. The eikonal approximation The eikonal approximation is based upon an expansion
of the square root in the WKBJ shift function (28) to first order in the dimensionless potential
αc. The shift function entering the forward model (32) in the eikonal approximation is then

ξ = ξE(z) = 1

2κ2

∫ z

−∞
dz′ αc(z

′). (34)

The eikonal approximation implies a weak velocity potential assumption, where the vertical
wavenumber ratio 	 in equation (12) is

	(z) ≈ 	E(z) = 1 − κ2

2
αc(z). (35)

The eikonal approximation is not discussed further in the present paper.

2.3.2. The Born approximation. By the expression ‘Born approximation’, it is understood
that the exact incident wave is replaced by the unperturbed incident wave exp(ikzz). In the
forward model developed in this paper, the Born approximation translates to setting the shift
function in the forward model (31) to zero:

ξ = ξB(z) ≡ 0. (36)

The dimensionless scattering amplitude in the Born approximation becomes

�B(k) = − ik

2κ

∫ ∞

0
dz α(z) exp(2ikzz), (37)

with the angle-dependent scattering potential

α(z) = −2 ln[rρ(z)	(z)]. (38)

Appendix B discusses the relationship between the Born potential and the primary
reflection response.

3. Inverse scattering

The forward problem associated with equation (32) is stated as follows. Given the velocity and
density potentials αc and αρ (or equivalently, the velocity and density ratios), respectively, find
the dimensionless scattering amplitude � that satisfies the prescribed boundary conditions.
In this section, we develop a procedure for reconstructing the velocity and density potentials
from the dimensionless scattering amplitude �. The solution is obtained in three steps. First,
the angle-dependent Born potential αB is computed by migrating the single scattering events in
the time intercept-slowness domain by using a constant reference medium. Second, we show
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that squeezed velocity and density potentials α̂c and α̂ρ , respectively, can be estimated by AVA
inversion of the residual moveout-corrected Born potential. Third, we show how the squeezed
potentials can be depth corrected by applying a nonlinear stretch function. The three steps
which require no information about the subsurface parameters except the reference medium
parameters can be described by the seismic data processing sequence constant-velocity (partial)
migration–inversion–residual migration.

3.1. The angle-dependent Born potential and the single scattering data

As shown in appendix C, the inverse Fourier transform over the frequency of equation (32)
yields

4
∫ 2z/v0

−∞
dt ′ �(t ′) =

∞∑
n=0

1

n!

dn

dzn
α(z)ξn(z), (39)

where z = v0t/2, and v0 = c0/cos θ is the plane-wave apparent velocity in the reference
medium along the depth axis. Recall that in the Born approximation, the shift function is
zero. By considering ξ = 0 in the forward model (31), the single scattering Born potential,
per definition, is obtained:

αB(z) ≡ α(z)|ξ=0 = 4
∫ 2z/v0

−∞
dt ′�(t ′). (40)

Equation (40), which is a key equation in the inversion procedure, is known as constant-
velocity migration or linear migration–inversion. Primary reflection events are placed at
depths computed linearly using their traveltimes together with the constant reference velocity.
Equation (39) can now be written as

αB(z) =
∞∑

n=0

1

n!

dn

dzn
α(z)ξn(z). (41)

By neglecting terms dnξ/dzn for n = 2, . . . ,∞, we can write equation (41) as an infinite sum
where the nth term is proportional to the nth power of the derivative of the shift function

αB(z) ≈
∞∑

n=0

(
dξ(z)

dz

)n ∞∑
m=n

1

(m − n)!

(
m

n

)
ξm−n(z)

dm−nα(z)

dzm−n
. (42)

From the Born potential αB(z), our goal is to use equation (42) as the basis for solving the
inverse scattering problem.

3.2. Nonlinear AVA inversion: estimation of squeezed potentials α̂c and α̂ρ from αB

We now show that we can predict what the velocity and density layer potentials are, not as
a function of their true depth, but as a function of the interface depths provided by the Born
potential at a zero incidence angle. These potentials which are predicted from αB at two
different angles are called ‘squeezed’ velocity and density potentials, denoted by α̂c and α̂ρ ,
respectively, because they mimic the potentials that would be obtained by compressing or
squeezing the depth axis of the actual velocity and density potentials.

Before we proceed we make one remark. After constant-velocity imaging of the scattered
data, one obtains one Born depth profile for every selected angle (or slowness). The first
interface is always lined up at the correct depth, say z1, in every Born depth profile. (The first
primary travels in the known reference medium only.) The second and following interfaces
will show some residual moveout across the Born depth profiles. Since we aim at predicting
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the squeezed potentials α̂c and α̂ρ as a function of vertical depth from αB at minimum two
different angles, the interface residual moveout must be corrected before the prediction can be
done. The residual-moveout correction does not affect the variation in amplitude with respect
to the angle of the Born potential.

Inside a layer, velocities are assumed to be constant (or vary smoothly with depth). It
is then reasonable to disregard in equation (42) all derivatives of α. The non-zero terms in
equation (42) arrive for n = m, giving

αB(z) ≈ α̂(z)

∞∑
n=0

[
1 − (1 − κ2α̂c(z))

1
2
]n

,
dn+1α(z)

dzn+1
= 0. (43)

The sum is a geometric series, and we obtain

αB(z) ≈ α̂(z)

[1 − κ2α̂c(z)]
1
2

. (44)

By inserting equation (33) for α̂(z), that is, α̂(z) = −2 ln[r̂ρ(z)	̂(z)]	̂(z), and recalling that
αB is a function of angle θ , we find

αB(θ, z) = −2 ln
(
r̂ρ(z)[1 − sec2 θα̂c(z)]

1
2
)
. (45)

We make two comments. First, the relation between the Born potential and the squeezed
velocity and density potentials is ‘exact’ within the limitations of the forward model which
slightly mispredicts the amplitudes of the single-scattering events due to the neglect of the
continuity of pressure and vertical component of particle velocity at layer interfaces. Further,
the relation is nonlinear; it is not linearized in any way with respect to changes in the acoustic
parameters as is commonly done in seismic amplitude versus angle analysis. Second, the
relationship has not been derived by assuming that the single scattering is from a smoothly
changing medium. Interfaces with step discontinuities in the medium parameters can be (and
is) present. Thus, there is no requirement of small contrasts in the acoustic parameters across
the interfaces. Therefore, relation (45) is the ticket to determining the acoustic parameters.

In addition to being useful, equation (45) is also simple and understandable, in particular
when we rewrite it in terms of angle, and velocity and density changes. One obtains

αB(θ, z) = − ln

[
1

cos2 θ

(
ρ0c0

ρ(z)c(z)

)
+

(
ρ0

ρ(z)

)2

sin2 θ

]
. (46)

For small angles, we note that one can only hope to recover the acoustic impedance, which is
a well-known result and no surprise. Larger angles are required to recover density.

We now proceed to find the scheme to estimate layer and density potentials. From
equation (45), it follows that

r̂2
ρ(z)[1 − sec2 θα̂c(z)] = exp[−αB(θ, z)]. (47)

When the Born depth profile is known for two angles θ0 and θ1, we can solve for the squeezed
velocity potential

α̂c(z) = cos2(θ1) − b(θ0, θ1, z) cos2(θ0)

1 − b(θ0, θ1, z)
, (48)

where

b = b(θ0, θ1, z) =
(

cos θ1

cos θ0

)2

exp[αB(θ0, z) − αB(θ1, z)]. (49)

From the estimated squeezed velocity potential and the calculated Born potential, the density
ratio can be straightforwardly computed as

ρ̂(z)

ρ0
= r̂−1

ρ (z) = [1 − sec2 θα̂c(z)]
1
2 exp

[
1

2
αB(θ, z)

]
. (50)
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3.3. Residual depth imaging: stretching of the squeezed potentials towards the
actual potentials

For the 1D inverse scattering problem, Amundsen et al (2005a, 2005b) have shown how the
squeezed velocity potential can be nonlinearly stretched with respect to the depth axis so that
the potential discontinuities are moved towards their correct location. The nonlinear stretch
function is a function of the squeezed velocity potential. Therefore, the solution is data driven
in the respect that no information about the medium other than the squeezed velocity potential
is required.

In the present case, two potentials have been estimated: the squeezed velocity potential
and the squeezed density potential. The data-driven depth imaging step, however, is similar
to that in the 1D case. The only difference is that in the present case the additional density
potential must be stretched. The stretch function for both potentials is the same and depends
solely on the squeezed velocity potential.

Equation (42) is a basis for deriving a closed-form solution for α. To this end, the Fourier
representation of α(z) is introduced, which gives

αB(z) ≈
∞∑

n=0

(
dξ(z)

dz

)n 1

2π

∫ ∞

−∞
dk Dn(kξ) exp(−ikz)α(k), (51)

where

Dn(kξ) =
∞∑

m=n

1

(m − n)!

(
m

n

)
[−ikξ(z)]m−n . (52)

The sum Dn can be written as

Dn(kξ) = exp[−ikξ(z)]
n∑

m=0

1

m!

(
n

m

)
[−ikξ(z)]n−m, (53)

and the expression for the Born potential then becomes

αB(z) ≈ 1

2π

∫ ∞

−∞
dk

{ ∞∑
n=0

(
dξ(z)

dz

)n n∑
m=0

1

m!

(
n

m

)
[−ikξ(z)]n−m

}
exp[−ik(z + ξ(z))]α(k).

(54)

In equation (54), the double sum can be written as a single sum that is recognized as an
expression for the exponential function

∞∑
n=0

(
dξ(z)

dz

)n n∑
m=0

1

m!

(
n

m

)
[−ikξ(z)]n−m = 1

1 − ξ ′(z)

∞∑
n=0

(−1)n

n!

(
ikξ(z)ξ ′(z)
1 − ξ ′(z)

)n

= 1

1 − ξ ′(z)
exp

(
− ikξ(z)ξ ′(z)

1 − ξ ′(z)

)
. (55)

The Born potential in equation (54) now reads

αB(z) ≈
(

1 − dξ(z)

dz

)−1 1

2π

∫ ∞

−∞
dk exp

[
−ik

(
z +

ξ(z)

1 − ξ ′(z)

)]
α(k). (56)

Using the translation property of the Fourier transform, we obtain a closed-form expression
for the Born potential

αB(z) ≈
(

1 − dξ(z)

dz

)−1

α

(
z +

ξ(z)

1 − dξ(z)

dz

)
. (57)
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As shown for the 1D scattering case by Amundsen et al (2005b), equation (57) can be improved
by introducing two new approximations, both of which are valid in the WKBJ approximation.
First, under the WKBJ assumption, when ξ ′′(z) is negligible, the replacement

ξ(z)

1 − dξ(z)

dz

→
∫ z

−∞
dz′

dξ(z′)
dz′

1 − dξ(z′)
dz′

, ξ ′′(z) = 0, (58)

is justified. Second, when ξ ′′(z) and all higher-order derivatives are disregarded, the following
replacement is justified:

[1 − κ2αc(z)]
− 1

2 → [1 − κ2α̂c(z)]
− 1

2 ,
dnξ(z)

dzn
= 0, n � 2. (59)

Inserting the two approximations into equation (57) and recalling equation (28) give the result

αB(z) ≈ [1 − κ2α̂c(z)]
− 1

2 α

(
z +

∫ z

−∞
dz′[(1 − κ2α̂c(z

′))−
1
2 − 1

])
. (60)

By using relationship (44) between the Born potential αB and the squeezed potential α̂,
equation (60) can be rewritten in the following form:

α̂(z) = α

(
z +

∫ z

−∞
dz′[(1 − κ2α̂c(z

′))−
1
2 − 1

])
. (61)

The nonlinear AVA inversion has determined the squeezed velocity and density potentials,
α̂c and α̂ρ , respectively. On the other hand, equation (61) gives the depth imaging procedure
to obtain the full angle-dependent potential. However, since both α̂ and α show the same
dependency upon their respective velocity and density potentials, as well as angle, depth
imaging of the velocity and density potentials must obey the same formula, respectively,

α̂c(z) = αc

(
z +

∫ z

−∞
dz′[(1 − α̂c(z

′))−
1
2 − 1

])
(62)

and

α̂ρ(z) = αρ

(
z +

∫ z

−∞
dz′[(1 − α̂c(z

′))−
1
2 − 1

])
. (63)

Thus, provided that the Born potential has been computed according to equation (40), (62)
and (63) suggest a two-step procedure for estimating the velocity and density potentials.
First, the squeezed velocity and density potentials α̂c and α̂ρ , respectively, are estimated by
the nonlinear AVA inversion of the Born potential. Then, the actual velocity and density
potentials αc and αρ are derived by applying a nonlinear shift to α̂c and α̂ρ according to
equations (62) and (63), respectively. The nonlinear shift is seen to correspond to stretching
the depth axis of the squeezed potentials. The effect of stretching is to locate interfaces that
are mislocated in α̂c and α̂ρ towards their correct location. Thus, in the absence of the actual
velocity function, the nonlinear AVA analysis and depth imaging (stretch) algorithm extract
the necessary information solely from the angle-dependent Born depth profile αB(z).

Finally, we remark that the residual depth imaging can be applied directly to the squeezed
velocity and density profiles as

ĉ(z) = c

(
z +

∫ z

−∞
dz′[(1 − α̂c(z

′))−
1
2 − 1

]) = c

(
c−1

0

∫ z

−∞
dz′ ĉ(z′)

)
(64)

and

ρ̂(z) = ρ

(
z +

∫ z

−∞
dz′[(1 − α̂c(z

′))−
1
2 − 1

]) = ρ

(
c−1

0

∫ z

−∞
dz′ ĉ(z′)

)
, (65)

where ĉ is the squeezed velocity profile defined through the squeezed velocity potential.



1934 L Amundsen et al

200 400 600 800 1000 1200
Depth(m)

0

0.2

0.4

0.6

0.8

A
m
p
l
i
t
u
d
e

(d)

200 400 600 800 1000 1200
Depth(m)

0

0.2

0.4

0.6

A
m
p
l
i
t
u
d
e

(c)

200 400 600 800 1000 1200
Depth(m)

1000

1400

1800

2200

 
 
 
 
 
 
 
 
 
 
 
 
 
3

D
e
n
s
i
t
y
(
k
g
/
m
 
)

(b)

200 400 600 800 1000 1200
Depth(m)

1500

1700

1900

2100

2300

2500

V
e
l
o
c
i
t
y
(
m
/
s
)

(a)

Figure 1. Actual models: (a) velocity, c(z); (b) density, ρ(z); (c) velocity potential, αc(z) and
(d) negative of density potential, αρ(z). The model is listed in table 1.

4. Model calculations

As an example of the nonlinear direct AVA analysis and data-driven depth imaging with
the objective to estimate the depth-dependent velocity and density potentials, and related
velocity and density, from the single scattering data, we consider the high-velocity/high-
density contrast piecewise-constant fifteen-layer acoustic medium, as displayed in figure 1
and listed in table 1. The reference velocity and density (in layer zero) are c0 = 1500 m s−1

and ρ0 = 1000 kg m−3, respectively. The model has some properties that should be noted.
The velocity is constant in layers 8 and 9, whereas the density is constant in layers 11 and 12.
In addition, there is a velocity increase, but a density decrease between layers 13 and 14.
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Figure 2. Angle gather of primary reflection events as a function of time intercept from the
fifteen-layer (fourteen-interface) model in figure 1. The eight reflection does not show amplitude
variation with angle, consistent with a density contrast only between layers 8 and 9. The angles
are defined in terms of the reference velocity as in equation (5).

Table 1. Fifteen-layer model, with reference velocity c0 = 1500 m s−1 and density ρ0 =
1000 kg m−3. Here, zn is the actual layer depth, znB(0) is the layer depth from zero-angle Born
constant-velocity migration, ẑn is the estimated actual layer depth, cn is the actual layer velocity,
ĉn is the estimated layer velocity, εcn is the relative error of the layer velocity estimate, ρn is the
actual layer density, ρ̂n is the estimated layer density, ερn is the relative error of the layer density
estimate, αcn is the actual velocity potential, αρn is the actual density potential and Rn(0) is the
zero-angle reflection coefficient.

zn znB ẑn cn ĉn εcn ρn ρ̂n ερn

n (m) (0)(m) (m) (m s−1) (m s−1) (%) (kg m−3) (kg m−3) (%) αcn αρn Rn(0)

0 1500 1000 0 0
1 300 300 300 1525 1525 0.0 1025 1025 0.0 0.03 −0.02 0.021
2 310 309.8 310 1550 1550 0.0 1050 1050 0.0 0.06 −0.05 0.020
3 320 319.5 320 1600 1600 0.0 1100 1100 0.0 0.12 −0.10 0.039
4 330 328.9 330 1675 1674 0.1 1150 1150 0.0 0.20 −0.14 0.045
5 350 346.8 350 1775 1773 0.1 1225 1225 0.0 0.29 −0.20 0.061
6 375 367.9 375 1900 1895 0.3 1300 1301 0.0 0.38 −0.26 0.064
7 400 387.7 400 2000 1988 0.6 1600 1599 0.1 0.44 −0.47 0.129
8 500 462.7 500 2000 1983 0.9 1900 1894 0.3 0.44 −0.64 0.086
9 600 537.7 599 2200 2173 1.2 2000 1990 0.5 0.54 −0.69 0.073

10 700 605.8 698 2600 2541 2.3 2400 2371 1.2 0.67 −0.88 0.173
11 800 663.5 795 2300 2272 1.2 2400 2366 1.4 0.57 −0.88 −0.061
12 1000 794.0 992 2200 2193 0.3 2300 2262 1.7 0.54 −0.83 −0.043
13 1100 862.2 1093 2400 2370 1.3 2200 2177 1.1 0.61 −0.79 0.021
14 1200 924.7 1191 2500 2451 1.9 2300 2277 1.0 0.64 −0.83 0.043

In the example, data are modelled in the time intercept-slowness domain with the algorithm
described in appendix A. The primary reflection data from the model are plotted in figure 2
as traces as a function of angle, ranging from 0 to 30◦, for an infinite bandwidth. The related
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Figure 3. Angle gather of Born potential depth profiles. The red, pink, green and blue colours
represent angles of 0, 10, 20 and 30◦, respectively. The angles are defined in terms of the reference
velocity as in equation (5).
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Figure 4. Moveout-corrected angle gather of Born potential depth profiles corresponding to the
gather in figure 3. The red, pink, green and blue colours represent angles of 0, 10, 20 and 30◦,
respectively. The angles are defined in terms of the reference velocity as in equation (5).
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Figure 5. Nonlinear AVA analysis of the moveout-corrected angle-dependent Born potential (at 0
and 20 degrees; see figure 4) gives squeezed potentials (red lines): (a) velocity potential and (b)
negative of density potential. For comparison, the zero-angle Born potential profile is displayed as
a black line.

angle-dependent Born potential is obtained by constant-velocity migration of each of the angle
traces. Figure 3 shows a selection of the Born potential depth profiles for angles of 0, 10,
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Figure 6. Data-driven depth imaging. Medium parameters are obtained by stretching the squeezed
potentials displayed in figure 5: (a) estimated velocity, (b) estimated density, (c) estimated velocity
potential and (d) negative of the estimated density potential. The estimated curves are shown in
red lines. For comparison, the actual models are displayed in black lines.

20 and 30◦. Observe that the first interface is correctly positioned in depth (at z1 = 300 m)
in all the angle profiles since the primary from the first interface always propagates with the
reference velocity. The other interfaces are generally severely mislocated in depth. In addition,
the image depth of these interfaces varies with angle, in the predictable way that the depth
decreases with an increasing angle. We call this behaviour the interface residual moveout.
Before any AVA analysis, the interface residual moveout should be corrected so that all Born
depth profiles have interface depths matching the interface depths of the zero-angle Born depth
profile. Since the number of interfaces is the same in every Born depth profile, the residual
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moveout correction to apply can be easily found, for instance, by applying edge-detection
techniques to each individual profile. Figure 4 shows the residual moveout-corrected angle
gather of the Born potential depth profiles corresponding to the gather in figure 3. In the
figure 4 gather, the interfaces are positioned at the same depth, but still the amplitudes of the
residual moveout-corrected Born profiles differ as a function of the angle. The amplitude
variation versus angle is the basis for estimating the squeezed depth-dependent velocity and
density potentials. In the present study, we use only the moveout-corrected angle-Born profiles
at 0 and 20◦ to estimate the squeezed potentials. Figure 5 displays the squeezed velocity and
density potentials. For comparison, the zero-angle Born potential profile is shown in the same
figure. Evidently, the depth of the interfaces of the squeezed potentials and the zero-angle
Born profile matches. From the squeezed layer potentials, estimates of layer velocity and
density, ĉn and ρ̂n, respectively, can be found. Observe that the estimated velocity and density,
presented in table 1 together with the actual velocity and density cn and ρn, respectively,
display the same properties as the true parameters. The estimated layer velocity and density
are at maximum approximately 2% off.

From the squeezed potentials, the actual velocity and density potentials can be estimated
in the WKBJ approximation by data-driven depth imaging, amounting to stretching the depth
axis of the squeezed potentials using the amplitude of the squeezed velocity potential only.
The results, both for velocity and density and related potentials, are shown in figure 6. The
estimated interface depth ẑn is summarized in table 1.

5. Conclusions

We have given the forward model for acoustic single scattering from a depth-variable acoustic
medium in the WKBJ, eikonal and Born approximations. We have shown that the acoustic
inverse scattering problem can be solved in three main steps. First, from the single scattering
data in the time intercept-slowness domain, an angle-dependent Born potential profile is
computed by constant-velocity imaging. Second, from the angle-dependent residual moveout-
corrected Born potential depth profiles, nonlinear direct AVA analysis is used to estimate
depth-dependent squeezed velocity and density potentials. The squeezed actual potentials
contain information of the amplitude of the corresponding actual potentials, not within the
actual potential layer interfaces, but within the layer interfaces of the zero-angle profile of
the Born potential. Third, the mislocated reflectors in the squeezed potentials are moved
with high precision towards their correct spatial location by applying a nonlinear stretch
function. The nonlinear AVA analysis and data-driven depth imaging require no information
of the medium other than the angle-dependent Born potential. In the nomenclature of seismic
data processing, the three steps can be described by the sequence constant-velocity (partial)
migration—inversion—residual migration.

A simple model example showed how the velocity and density potentials with associated
velocities and densities could be estimated in the WKBJ approximation, from the angle-
dependent Born potential. Even for high-velocity and high-density contrast media (strong
potentials), the theory gives an inverse scattering procedure that reconstructs the potentials
and their nature to a good approximation.
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Figure A1. Layered medium. The velocity c(z), density ρ(z) and potential α(z) are generally
discontinuous at layer interfaces z1, z2, . . . , zN .
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Appendix A. Modelling of the primary reflection response

We consider plane-wave propagation with slowness (ray parameter) p = sin θ/c0 through a
medium with N + 1 homogeneous layers with constant layer velocities cn, densities ρn and
thicknesses hn as shown in figure A1. The source and receiver are both located at depth z = 0
in the zeroth layer which is the reference medium with velocity c0 and density ρ0.

The differential equations (21) and (22) together with proper boundary conditions show
that the pressure field is made up of an infinite sum of reflections and refractions inside the
medium (cf Bremmer (1951) and Santos et al (1996)). In what follows we show how to
model the primary reflection response, that is, the waves that are split off by reflection from
the downgoing source wavefield when it is transmitted into the medium. To this end, it is
necessary to define the reflection and transmission coefficients in the stack of layers. As is
well known, the coefficients can be derived by assuming that the pressure and the vertical
particle velocity are continuous fields at every boundary. For a plane wave incident in layer
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n − 1, the reflection coefficient is

Rn(p) = ρnvn(p) − ρn−1vn−1(p)

ρnvn(p) + ρn−1vn−1(p)
, (A.1)

where

vn(p) = cn√
1 − (cnp)2

is the apparent velocity in layer n along the depth axis, and the transmission coefficient is

T (D)
n (p) = 1 + Rn(p).

We will also require that a wave transmitted in the opposite direction, upwards from layer n
into layer n − 1, has the transmission coefficient

T (U)
n (p) = 1 − Rn(p).

Thus, the two-way transmission loss for a plane wave passing down and up through the
interface at depth zn is

T (D)
n (p)T (U)

n (p) = 1 − R2
n(p).

When the source is initiated with unit strength, a plane wave propagates downwards with
velocity c0 into the discontinuous, layered medium. At the boundary of the first layer, at depth
z1 = h0, the incident wave which is represented by

D0(ω, p) = exp[iωh0/v0(p)],

is split into [I] a refracted wave penetrating into this layer with amplitude T
(D)

1 (p) and
represented by

D1(ω, p) = D0(ω, p)T
(D)

1 (p) exp[iω(z − z1)/v1(p)], z1 < z < z2,

and [II] a reflected wave with amplitude R1(p) returning to the receiver level where it is
represented by

�1(ω, p) = R1(p) exp[2iωh0/v0(p)].

The downgoing wave D1(ω, p) will be split at the next interface at depth z2 into a refracted
wave

D2(ω, p) = D1(ω, p)T
(D)

2 (p) exp[iω(z − z2)/v2(p)], z2 < z < z3,

penetrating into layer 3, and a reflected wave which, after being refracted through the interface
at depth z1, returns to the receiver level with representation

�2(ω, p) = R2(p)
[
1 − R2

1(p)
]

exp[2iωh1/v1(p)] exp[2iωh0/v0(p)].

This procedure of splitting is repeated at each next interface. The chain of wave consisting
of the sequence �1,�2, . . . , �N is by Bremmer (1951), called the principal wave, but is in
reflection seismology, it is called the primary reflection response. One reflection response is
obtained for each slowness.

In the frequency-slowness domain, the N events of the dimensionless scattering amplitude
can be modelled as

�(ω, p) =
N∑

n=1

�n(ω, p) =
N∑

n=1

R̂n(p) exp

(
2iω

n−1∑
m=0

hm

vm(p)

)
, (A.2)

where each wave has the form of the product of an amplitude function and a delay function,
both depending only on slowness. The frequency dependence comes only as a complex
exponential due to the delay. The amplitude of the wave from the interface at depth zn is
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the product of the plane-wave reflection coefficient at zn and the transmission coefficients
encountered by the wave, namely

R̂1(p) = R1(p), R̂n(p) = Rn(p)

n−1∏
j=1

[
1 − R2

j (p)
]
, n = 2, 3, . . . , N. (A.3)

Performing an inverse Fourier transform over frequency, the dimensionless scattering
amplitude in the time intercept-slowness domain becomes

�(t, p) =
N∑

n=1

R̂n(p)δ(t − τn(p)), (A.4)

where δ(t) is the Dirac delta function. The arrival time (called time intercept) of the primary
reflection from depth zn is

τn(p) = 2
n−1∑
m=0

hm

vm(p)
.

(In the time-space domain, τ is the time intercept of the tangent line with slope p with the time
axis.)

Appendix B. The Born potential

In the forward model developed in this paper, the Born approximation translates to setting the
shift function in the forward model (31) to zero:

ξ = ξB(z) ≡ 0. (B.1)

Introduce the reference vertical slowness q = kz/ω =
√

c−2
0 − p2 and consider the Born

approximation model

�(ω, p) =
∫ ∞

0
dz s(p, z) exp(2iωqz), (B.2)

where the scattering function s is given in equation (20). By performing a partial integration
over depth, one obtains

�(ω, p) = − iωq

2

∫ ∞

0
dz αB(p, z) exp(2iωqz), (B.3)

where

αB(p, z) = −2 ln[rρ(z)	(p, z)] (B.4)

is the single-scattering Born potential. Our objective is now to invert equation (B.3) for the
Born potential.

Consider the inverse Fourier transform over the frequency of equation (B.3), that is,

2

π

∫ ∞

−∞
dω exp(−iωt)

�(ω, p)

−iω
=

∫ ∞

0
dz′ αB(p, z′)

1

2π

∫ ∞

−∞
dω′ exp

[
−iω′

(
t

2q
− z′

)]
,

(B.5)

where ω′ = 2ωq. By evaluating the integrals over frequency using equations (C.3) and (C.4),
we obtain

4
∫ 2z/v0(p)

−∞
dt �(t, p) =

∫ ∞

0
dz′ αB(p, z′)δ(z − z′), (B.6)

where we have introduced z = t/(2q) = v0t/2, and v0 = v0(p) = c0/
√

1 − (c0p)2 is the
apparent velocity of the plane wave along the depth axis. The Born potential is thus related to
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Figure B1. Layered medium that would be obtained from constant-velocity Born imaging.

the single scattering data as

αB(p, z) = 4
∫ 2z/v0(p)

−∞
dt �(t, p). (B.7)

Equation (B.7) which is a key equation in the inversion procedure is known as constant-velocity
migration or linear migration–inversion where primary reflection events are placed at depths
computed linearly using their traveltimes together with the constant reference velocity. This
is readily verified by substituting the primary reflection response (A.4) into equation (B.7).
One obtains

αB(p, z) = 4
N∑

n=1

R̂n(p)H(z − znB(p)), (B.8)

where H(z) is the Heaviside function, and znB is the depth at which the reference velocity c0

images the nth reflector:

znB(p) = v0(p)

n−1∑
m=0

hm

vm(p)
.

The Born-estimated thickness of layer m is thus

hmB(p) = v0(p)

vm(p)
hm.

Observe that the first reflector is imaged at its correct depth for all slowness (or angle) traces,

z1B = h0 = z1,

which is obvious since αc(z) = 0 for z < z1.
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The depth model that would be obtained from the constant-velocity Born migration is
shown in figure B1.

Appendix C. Inverse Fourier transform of equation (32)

This appendix demonstrates that the inverse Fourier transform over the frequency of
equation (32) yields equation (39). To this end, we make use of the Dirac delta function
properties (Zwillinger 1996)∫ ∞

−∞
dx f (x)

dnδ(x − a)

dxn
= (−1)n

dnf (a)

dxn
, (C.1)

δ(ax) = 1

|a|δ(x), (C.2)

and the Fourier transform representation

dnδ(x − a)

dxn
= 1

2π

∫ ∞

−∞
dk(ik)n exp[ik(x − a)]. (C.3)

In addition, we make use of the Fourier integral transform

1

2π

∫ ∞

−∞
dk exp(−ikz)

f (k)

−ik
=

∫ z

−∞
dt f (t). (C.4)

For any finite k and ξ(z), express the exponential function exp[ikξ(z)] in equation (32) as
an infinite series

exp[−2ikξ(z)] =
∞∑

n=0

(−2ik)n

n!
ξn(z). (C.5)

Equation (32) is then written as

�(ω)

−iω
= q

2

∞∑
n=0

(−q)n

n!

∫ ∞

0
dz′α(z′)(2iω)n exp(2iωqz′), (C.6)

where we have used that kz = ωq. Applying the inverse Fourier transform (2π)−1∫
dω exp[−iω(2qz)] to equation (C.6), using equation (C.4), and interchanging the depth

and frequency integrals give

4
∫ 2qz

−∞
dt ′ �(t ′) = q

∞∑
n=0

(−q)n

n!

∫ ∞

0
dz′ α(z′)

1

2π

∫ ∞

−∞
dω (iω)n exp[iωq(z′ − z)]. (C.7)

By using the Delta function properties (C.3), (C.2) and (C.1), and recalling that q = 1/v0,
one obtains equation (39).
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